Intelligence API PRO
Execution intelligence for multi-agent systems. Query Kalibr to get the best model, tool, and parameters for your goal based on historical outcomes.
The Outcome Loop
1. Before: Call get_policy(goal) → get best model, tool, params
2. Execute: Use recommended configuration
3. After: Call report_outcome() with what you used → teach Kalibr
4. Repeat: Recommendations improve over time
Full Execution Routing NEW
Kalibr doesn't just recommend models — it recommends the full execution recipe: model, tool, and parameters, all optimized based on what's actually worked for each goal.
from kalibr import get_policy, report_outcome
# Get full execution policy
policy = get_policy(
goal="fetch_webpage",
include_tools=True, # Get tool recommendations
include_params=["timeout", "retries"], # Get param recommendations
)
# Use the recommendations
model = policy["recommended_model"] # "gpt-4o"
tool = policy.get("recommended_tool") # "browserless"
params = policy.get("recommended_params", {}) # {"timeout": "30", "retries": "2"}
# Execute your task with recommended config...
# Report outcome with full context
report_outcome(
trace_id=trace_id,
goal="fetch_webpage",
success=True,
tool_id=tool, # What tool you used
execution_params=params, # What params you used
)
Python SDK
get_policy()
from kalibr import get_policy
policy = get_policy(
goal="book_meeting", # Required
task_type="scheduling", # Optional filter
constraints={ # Optional
"max_cost_usd": 0.05,
"max_latency_ms": 3000,
"min_confidence": 0.7,
"max_risk": 0.3,
},
window_hours=168, # Default: 1 week
include_tools=True, # Include tool recommendations
include_params=["temperature"], # Include param recommendations
)
# Response
{
"goal": "book_meeting",
"recommended_model": "gpt-4o",
"recommended_provider": "openai",
"outcome_success_rate": 0.87,
"outcome_sample_count": 234,
"confidence": 0.92,
"risk_score": 0.15,
"reasoning": "Best success rate with acceptable cost",
"alternatives": [...],
# Tool routing (when include_tools=True)
"recommended_tool": "calendar_api",
"tool_success_rate": 0.91,
"tool_sample_count": 156,
"tool_alternatives": [...],
# Parameter routing (when include_params specified)
"recommended_params": {"temperature": "0.3"},
"param_details": {
"temperature": {
"recommended_value": "0.3",
"success_rate": 0.89,
"sample_count": 98,
"alternatives": [...]
}
}
}
report_outcome()
from kalibr import report_outcome, get_trace_id
# Success with full context
report_outcome(
trace_id=get_trace_id(),
goal="book_meeting",
success=True,
tool_id="calendar_api", # What tool was used
execution_params={ # What params were used
"temperature": "0.3",
"timeout": "30"
},
)
# Failure with context
report_outcome(
trace_id="abc123",
goal="book_meeting",
success=False,
score=0.3, # Optional: quality 0-1
failure_reason="calendar_conflict",
tool_id="calendar_api",
execution_params={"temperature": "0.7"},
metadata={"attendees": 5},
)
get_alternative()
Get a fallback model after the primary recommendation failed. Useful for retry logic.
from kalibr import get_alternative
# Primary model failed, get next best option
alt = get_alternative(
goal="book_meeting",
exclude_models=["gpt-4o"], # Models already tried
task_type="scheduling", # Optional
constraints={...}, # Optional
)
# Response
{
"goal": "book_meeting",
"recommended_model": "claude-3-sonnet",
"recommended_provider": "anthropic",
"outcome_success_rate": 0.82,
"confidence": 0.78,
"reasoning": "Next best after excluding gpt-4o",
"remaining_alternatives": 2
}
get_recommendation()
from kalibr import get_recommendation
rec = get_recommendation(
task_type="summarization",
goal="summarize_document", # Optional
optimize_for="balanced", # cost, quality, latency, balanced, cost_efficiency
constraints={...},
window_hours=168,
)
KalibrIntelligence Class
from kalibr import KalibrIntelligence
client = KalibrIntelligence(
api_key="sk_...",
tenant_id="my-tenant",
base_url="https://kalibr-intelligence.fly.dev",
timeout=10.0,
)
policy = client.get_policy(
goal="book_meeting",
include_tools=True,
include_params=["temperature"]
)
client.close()
REST API
Base URL: https://kalibr-intelligence.fly.dev/api/v1/intelligence
Authentication
X-API-Key: YOUR_API_KEY
X-Tenant-ID: YOUR_TENANT_ID
Content-Type: application/json
Endpoints
| Method | Endpoint | Description |
|---|---|---|
| POST | /policy |
Get policy for a goal (model + tool + params) |
| POST | /recommend |
Get model recommendation by task type |
| POST | /report-outcome |
Report execution outcome |
| POST | /get-alternative |
Get fallback model after failure |
| GET | /patterns/{task_type} |
Get aggregated patterns |
| POST | /compare |
Compare specific models |
| POST | /aggregate |
Trigger pattern aggregation |
| POST | /clear-realtime-stats |
Clear real-time stats (testing) |
| GET | /health |
Health check |
POST /policy
curl -X POST https://kalibr-intelligence.fly.dev/api/v1/intelligence/policy \
-H "X-API-Key: $API_KEY" \
-H "X-Tenant-ID: $TENANT_ID" \
-H "Content-Type: application/json" \
-d '{
"goal": "book_meeting",
"include_tools": true,
"include_params": ["temperature", "timeout"]
}'
POST /report-outcome
curl -X POST https://kalibr-intelligence.fly.dev/api/v1/intelligence/report-outcome \
-H "X-API-Key: $API_KEY" \
-H "X-Tenant-ID: $TENANT_ID" \
-H "Content-Type: application/json" \
-d '{
"trace_id": "abc123",
"goal": "book_meeting",
"success": true,
"tool_id": "calendar_api",
"execution_params": {"temperature": "0.3"}
}'
POST /get-alternative
Get the next best model after your primary choice failed.
curl -X POST https://kalibr-intelligence.fly.dev/api/v1/intelligence/get-alternative \
-H "X-API-Key: $API_KEY" \
-H "X-Tenant-ID: $TENANT_ID" \
-H "Content-Type: application/json" \
-d '{
"goal": "book_meeting",
"exclude_models": ["gpt-4o"],
"task_type": "scheduling"
}'
POST /clear-realtime-stats
Clear real-time statistics. Useful for testing or resetting learning.
curl -X POST "https://kalibr-intelligence.fly.dev/api/v1/intelligence/clear-realtime-stats?goal=book_meeting" \
-H "X-API-Key: $API_KEY" \
-H "X-Tenant-ID: $TENANT_ID"
Request Parameters
get_policy / POST /policy
| Parameter | Type | Description |
|---|---|---|
goal | string | Required. The goal to optimize for |
task_type | string | Optional. Filter by task type |
constraints | object | Optional. Cost/latency/quality constraints |
window_hours | int | Optional. Time window (default: 168 = 1 week) |
include_tools | bool | Optional. Include tool recommendations (default: true) |
include_params | array | Optional. Param keys to get recommendations for |
report_outcome / POST /report-outcome
| Parameter | Type | Description |
|---|---|---|
trace_id | string | Required. The trace ID from execution |
goal | string | Required. The goal this execution targeted |
success | bool | Required. Whether the goal was achieved |
score | float | Optional. Quality score 0-1 |
failure_reason | string | Optional. Why it failed |
tool_id | string | Optional. Tool that was used |
execution_params | object | Optional. Parameters that were used |
metadata | object | Optional. Additional context |
get_alternative / POST /get-alternative
| Parameter | Type | Description |
|---|---|---|
goal | string | Required. The goal to get alternative for |
exclude_models | array | Required. Models to exclude (already tried) |
task_type | string | Optional. Filter by task type |
constraints | object | Optional. Cost/latency/quality constraints |
window_hours | int | Optional. Time window (default: 168) |
Optimization Targets
| Target | Description |
|---|---|
cost | Minimize cost per request |
quality | Maximize output quality |
latency | Minimize response time |
balanced | Balance all factors (default) |
cost_efficiency | Maximize quality-per-dollar |
Constraints
{
"max_cost_usd": 0.05, // Max cost per request
"max_latency_ms": 2000, // Max latency
"min_quality": 0.8, // Min quality score (0-1)
"min_confidence": 0.7, // Min statistical confidence
"max_risk": 0.3 // Max risk score (0-1)
}
How It Works
The Intelligence service uses:
- Wilson Score: Statistical confidence intervals for success rates
- Risk Assessment: Variance and tail behavior analysis
- Efficiency Scoring: Quality-per-dollar metrics
- Pareto Frontier: Identifies optimal tradeoff models
- Tool Patterns: Tracks success rates per tool for each goal
- Parameter Patterns: Tracks success rates per parameter value
Patterns are aggregated every 5 minutes from trace and outcome data.
Configuration
| Variable | Default | Description |
|---|---|---|
KALIBR_API_KEY |
— | API key |
KALIBR_TENANT_ID |
— | Tenant ID |
KALIBR_INTELLIGENCE_URL |
https://kalibr-intelligence.fly.dev |
Intelligence API URL |
Availability
The Intelligence API is available on Pro and Enterprise plans. Free tier users receive a 403 response.
Next Steps
- Python SDK — Full SDK documentation
- API Reference — All REST endpoints